Probabilità

Matematica Rela zi oni, dati e p re visi oni Quaderno delle competenze: pagg. 149-150 Probabilità Alcuni eventi sono probabili, ossia vi è la possibilità che si realizzino. La probabilità che un evento si verifichi si può calcolare. OSSERVA Mattia e Alice lanciano la moneta per decidere chi comincerà il gioco. Mattia sceglie testa e Alice sceglie croce . Chi ha più probabilità di vincere? Se si lancia una moneta è più probabile che si presenti testa o croce? TESTA ha 1 possibilità su 2 di presentarsi. CROCE ha 1 possibilità su 2 di presentarsi. Mattia e Alice, quindi, hanno le stesse possibilità di cominciare per primi il gioco. Le probabilità che esca TESTA o che esca CROCE si possono scrivere sotto forma di frazione. COME CALCOLARE LE PROBABILIT 1 una possibilità su probabilità = 2 due casi possibili La probabilità che un evento si verifichi dipende dal numero di casi favorevoli su tutti i casi possibili. casi favorevoli casi possibili Osserva questo esempio. Verifichiamo insieme. Se giri questa ruota si può verificare uno dei seguenti eventi: la lancetta si ferma sul verde, la lancetta si ferma su una fragola. Quale dei due eventi è più probabile? Perché? La lancetta ha 12 spazi diversi su cui fermarsi. 4 sono favorevoli all uscita del verde. 8 sono favorevoli all uscita di una fragola. Per il verde, quindi, ci sono 4 possibilità su 12 che esca, ovvero 4 . 12 Per l uscita della fragola ci sono, invece, 8 possibilità su 12, ovvero 8 . 12 quindi più probabile che esca una fragola. Osserva, leggi e collega ogni pallina con un punto della linea, in base alla tua previsione . Quale pallina verrà estratta da Marco? Collega ogni pallina con un punto della linea, in base alla tua previsione . Quante probabilità ha ciascuna pallina di essere pescata? 344 certo probabile più probabile impossibile meno probabile P OSS I B I L E
Probabilità